
NOTATION 

T, temperature; p, pressure; V, volume; p, density; R, gas constant; B, second virial 
coefficient; H, enthalpy; ~U, internal energy; r, intermolecular distance; ~, intermo!ecular 
potential function. 
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TEMPERATURE DISTRIBUTION IN A ROTATING HOLLOW CYLINDER 

I. A. Ignashov and V. A. Bystroumov UDC 536.24.02 

The temperature distribution in a hollow cylinder rotating with a given angular 
velocity is found for steady-state boundary conditions of the first kind. 

We consider an infinitely long cylinder whose radial cross section is a doubly connected 
region S bounded on the outside by contour L (a circle of radius R) and on the inside by con- 
tour Lo (a circle of radius Ro). A certain portion of the outer surface of the cylinder is 
in contact with a strip of hot metal translating with a velocity V. As a result of the con- 
tact with the moving strip the cylinder rotates about a fixed axis with an angular velocity 

= V/R. The cylinder receives heat by contact, convective, and radiant heat transfer. At 
time t = 0 when the thermal process begins, a liquid enters the channel of the cylinder under 
turbulent conditions and maintains the temperature of the inner surface constant. The tem- 
perature on contour L at t = 0 is established instantaneously and does not change with time 
in the XOY system (Fig. i); the initial temperature in the volume of the cylinder is assumed 
constant. It is required to find the temperature distribution in the cylinder at any time 
t>O. 

The temperature at the boundary is a continuous periodic function of points on contour 
L, and can be represented in the XOY system by a Fourier series: 

0 (1, ~) = 0 + ~f~ [~. sin (n~) + ?~ cos (n~)l, (1) 
n ~ l  

O(po, qD)= 0,; O(p, ~p, Fo)leo=o = Oz. (2) 

The required temperature which satisfies boundary condition (i) and the initial condi- 
tion (2) is determined by solving the heat-conduction equation 

az~ 1 OO 02@ OO O@ 
- -  + ---- 6 ----Pd q--- (3) 

ap 2 p a@ pZaq~z aqo a Fo 
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Fig. i. Measured values of the tempera- 
ture along outer contour L of roller. 

Here 

O = 
T - -  Tinm ?'an 7'b,~ . 

Tmax--Train ; 13n -- Tmax--Tram ; u = T m a x - - T r a m '  

R 2 
p = r / R ,  Po=RolR;  P d =  a o; F o =  --t; (4) 

hn a 

T is the running dimensional temperature; Tma x and Tmin, maximum and mimimum temperatures; 
Oi and Oa, respectively, the dimensionless values of the temperature of the inner surface and 
the initial temperature of the cylinder; a n and bn, coefficients in the Fourier series for 
the dimensional temperature on L; r, running radius; a, thermal diffusivity; Pd, Predvodl- 
telev number; Fo, Fourier number. 

Since the required temperature e(p, % Fo) is a continuous, single-valued function 
of the points of the cross section S, ana satlsfies Dirichlet conditions, it can be expanded 
in a Fourier series: 

2 O(p,  % Fo) = ~ - A o ( p ,  Fo) + E A . ( p ,  Fo) cos[n(q~--PdFo) lq-  Bn(p, Fo) sin [n ( ~ - -  Pd Fo) l. (5) 
r l ~ l  n ~ l  

The coefficients Ao(0, Fo), A n (p ,  Fo) , Bn(P, Fo) are functions to be determined. 

The problem is more conveniently solved by writing Eqs. (I) and (5) in complex form: 

- 

O(1, Ip) = T %  q- a~'n~-l-b~-'n~, (6) 

1 A ~ A ~ ( p ,  Fo) O (p. ~o, Fo) = -~- o (P, Fo) q- 0 
t l =  I 

eZ.,~-pd Fo) -F V B ~ (p, Fo) e - i ~ - p d  Fol ~ ' (7) 

where 

_ _ _ _  o 1 1 AO = "-21 (A~ --  iB.); B ~ 21 (A n q_ iBm); ao = 20; a~ = -~- (u - -  i1~,~); b~ = ~ -  (?~ q- il~.). (8) 

Since the coefficients A ~ and B ~ n are complex conjugates it is sufficient to find one 
of them. Because of the linearity o~ problem (1)-(3) each term of series (7) must satisfy 
Eq. (3). Substituting successively the terms of series (7) into Eq. (3), we obtain the fol- 
lowing two problems : 

dZAo + 1 OAo _ 0.4o , (9) 
dp z p dO a Fo 

and 

Ao(1, F o ) = 2 0 ,  Ao(po, F o ) =  2 0 .  Ao(p, 0 ) =  202 (10) 

OZA o t OA ~ n z OA ~ 

Op z + p 0~- pZ A~ OFo ' (11) 
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A~(1, FO) o,~Vdro, o o = ane A~ (Po, Fo) = O, A~ (p, O) = O. 

The s o l u t i o n  o f  p rob lem ( 9 ) - ( 1 0 )  i s  known [1] to  have  t he  form 

Ao(p, F o ) = 2  ( O . - - ~ ) ) ~ + g  + n,~ ot hole , 

(i2) 

(13) 

2~Jo (~%0 [(Oa -- ~) 4 (~,nPo) + (0, -- 0~) io (~'n)], (14) 
An = J~ (xnP0)'. J~ (~n) (15) 

Vo (~,.P) = Jo (~..,P) Yo (h.Po) - -  Jo (Z.Po) Yo (Znp), 

Jo(x) and Yo(X) are zero-order Bessel functions of the first and second kind, and the Xn are 
the roots of the characteristic equation 

4 (~) Yo (~po) - ro (~) 4 (zpo) = o. (16) 

We seek the solution of problem (11)-(12) as the sum of two functions [2]: 

Fo"--  . 0 . .  A~ Fo)=A~176 L-t- nn [(P, Fo), (17) 

where  A~~ Fo) s a t i s f i e s  Eq. (11) and bounda ry  c o n d i t i o n s  ( 1 2 ) ,  and An*(0 , Fo) s a t i s f i e s  
t h e  same e q u a t i o n  w i t h  z e r o  b o u n d a r y  c o n d i t i o n s .  O m i t t i n g  i n t e r m e d i a t e  c a l c u l a t i o n s ,  we 
w r i t e  t h e  f i n a l  s o l u t i o n  o f  p rob lem ( 1 1 ) - ( 1 2 )  i n  t h e  form 

An ~ (p, Fo) = [C~)Jn (V -:-in Pd p) q-C~-)Yn (l/  - - in Pd p)] e ~ Pd Fo + Z A,~nVn (~'n~P) e--~'~hF~ (18) 
k = l  

The d e f i n i t i o n  o f  Vn(XnkP) i s  a n a l o g o u s  to  ( 1 5 ) ,  and the  )'nk a r e  t he  r o o t s  o f  t he  e q u a t i o n  

Jn (~,n) Yn (~,nPo) - -  Yn (~,n) Jn (LnPo) = O. (19) 

The constants Cn ( ')-  and Cn (:)- a r e  determined from the equations 
0 C~ff)J, (/--in Pd) q-Cln=~Yn (If--in Pd) = an, 

~(2) ~ (20) C(. ~ ~ J,~ ( V - - in  Pd P0) -t- c n Y_ (1 / - - in  Pd P0) = 0. 

Satisfying the initial condition (12) and taking account of the orthogonality of the 
functions Vn(%nkP) in the interval [po, i], we obtain from (19) the coefficient 

I 

~ 2 3 [ C ~ ' ) d n ( V - - i n P d p ) + C ~ i r r ' , ~ ( l / ' ~ P ) l p V n ( ~ n h p ) d p  
An k = ~l ~.n~l, (k,~) p. (21) 

2 ~ (x .~  - j~ ( ~ )  ' 

and from Eq. (8) the expressions for the coefficients 

An( p, Fo)--  2ReA.~ Fo), Bn(p, F o ) = - - 2 I m A ~  Fo), (22) 

where Re and Im denote the real and imaginary parts of the expressions on the right-hand 
sides of these equations. Introducing the notation 

J,~ (V'~/----n--PTp) = ber. (p) - -  i bei,~ (p), 

Y~ V-~[n  Pd p) = vern (p) - -  i vein (p), 

= m ~n :=Yn --tyn . 

A,~ = ~} - i., 2 

and using well-known expansions for Jn(z) and Yn(z) 
and imaginary parts, we obtain 

- (--1)k ( /  n Pd)ik+n cos 

bern (p) = k! (n + k)! 
k = 0  

bei~(p) = ~m (--l)k(Vn-P-d)ih+nsin 4 ~ (2k+n)  

k! ( .  + k)! 

given, e.g.,in 

(2k + n) 

(23) 

[3] and separating real 

{ p hik+~ 
Vi-) ' 
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ver,, (p) = a2 bern (p) In C, ]/n2 Pd p 21 bein (p) --  

:I 
- - '  (n - -  k - -  1)! (]/'n--P-'d') ~a-" cos (2k - -  n) 

~ =0 

-----~- -~-+. . .  n + ~ + l + T + ' " +  , 

- -  (p) In C, ~ I bern (p) - -  v e i .  (9) = 2 ~ bein Pd p q_ 

. - t  (n - - k -  l ) t ( l /n--~)  ~-n sin a _  (2k - -n )  

:t k! 

1 b e i n ( p ) (  1 1 l 1 1 ) 
+T+. . .+  +i+ +...+ . T T 

Here  

we obtain 

C = in Cx is Euler's constant. 

Introducing the notation 

A(n') = bern (Po) vern (I) - -be th  (Po) vein (1) - -  ver .  (Po) bern (1) + vein (po) bein (1), 

A(~ ~ = bein (Po) vern (1) + bern (Po) vein (1) - -  bern (1) vein (Po) --bei,, (1) vern LOo). 

A = 2 {[A~')p + [A<~2~I~+}, 

from system (21) the following explicit expressions for 6~x), 6 ~2), 
and w(2) : 

nk 
Vn [vern (Po) A~ ~) + vein (Po) At+2)l + 15. [vern (P0) A~ 2) -- vein (Po)At~ ~) ] 6( t ) 

A 

8(2)= ~n [ver.  (Po) A~. ') + vein (Po) A(~)I - - ? .  [ver.  (Po) A~ ~ ) -  vein (po)A(# ~)1 
n A ' 

?( , )=  V,, Ibern (Po) A~ t) + bei.  (Po) A(~2)I + {Sn [bern (Po) A(~ 2) - -bein (Po) A(~)I 
A 

~'. [bei. (Po) A(~ ') - -  bern (Po) A(~ 2)1 -{- ~n [bern (po)A(. ~) + bein (Po) A(~2)I u 
A 

2 2 2 

tunk  
o 2 �9 . [Jn (~..~)--1] (~..hPo)] 

2 2 2 (2) ~ ;~.hJ~ (~n~) 
O ) n k  ~ 2 o 

2 [J. (kn~).-J;, (Z,.hpo)l 

Finally 

I 

[ 15(~) bein (p) - -  8~') bern (p) + u ver .  (p) - -  u vein (P)l pVn (gnkP) dp, 

0 ,  

1 

S lye' ) vein (p) -k u vern (p) - -  6~ t) bein (p) - -  67> bern (p)] oVn (Z,n~p) dp. 

Po 

the required temperature takes the form 

o (p, ,#, Fo) = (0,  - -  ~ )  + ~ + E AnVo (~'nP) e-x]F~ "if- 
n = l  

H- 2 ~ {[8~ 2) bei .  (p)- -  6~. I ) bern (p) -k V~ ] ) vern (p) - -  V~. 2) vei .  (P)l cos (ntp)-- 
n = | 

- -  [6 (2) ber.  (9) q- 6(1) bein (P) - -  y(#2)ver. (p) - -  y(~l) vein (p)] sin (nq))} q- 

§ 2 %~ /~'~ ~o("V,,k ,~ (~'nkP) e -~'-''v~ cos [n (o/-- Pd Fo)] q- 2 Z Z ~o(~'V,~ (~..hg)e -x'e'kv~ sin [n (qD - -  Pd Vo)]. 
n = l  k :~ l  n = l  k = l  

(24) 

(25) 

(26) 

(27) 
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Fig. 2. Curves of the dimensionless temperature distribution in a 
radial cross section of roller: a) Fo = 0.01; b) 0.05; c) 0.5, 
is in deg. 

To calculate the temperature distribution, the temperature was measured on the outer 
contour L of the cylindrical model with internal cooling, shown in Fig. !. 

It is expedient to write the boundary conditions on contour L as a finite sum instead 
of an infinite Fourier series. Experiments showed that the temperature distribution can be 
approximated with sufficient accuracy by the function 

m~ m~ 

n ~ l  n ~ l  

where T is obviously the average temperature on the outer contour; ml = m2 = (s -- 1)/2 if the 
number of points s at which the temperature is measured is odd; m~ = s/2, m2 = (s -- 2)/2 if 
s is an even number. The constants T, aan.1 , and b2n are to be determined. We present the 
solution of system (28) for the temperature distribution shown in Fig. i: 

I ral Pa3 ~a+ PaT Yb~ Tb+ ~0+ Yb+ P 

84,00 "29,98 11,3i 0,28 --49,60 20,00]--5,40 --1,871151,87 

_oo~ l 1 0,2545 0,0343 0,00~ --0,1503 0,0606 --0,0164 --0,0057 0,3996 
I 1 

The coefficients ~, Bn, and Yn are found from Eqs. (4). The temperature of the channel 
wall TI is determined by the method described in [4]. 

TABLE I. Roots of Characteristic Equations 

0 1 2 

1 1 3,3139 2 6,8576 
3 10,3370 
4 13,8864 
5 17,3902 

3,6077 
7,0953 

10,5830 
14,0706 
17,5582 

4,0763 
7,5518 

11,0272 
I4,5027 
17,9781 

4,8619 
8,3170 

11,7720 
15,2270 
18,6821 

5,9844 
9,4100 

12,8356 
!6,2613 
19,6869 
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The following numerical values were used in calculating the temperature distribution: 
TI = 82~ (el = 0.1879); T2 = 20~ (02 = 0); R = 80 mm; R0 = 8 mm; Po = 0.i; Pd = 350. The 
eigenvalues %n and %nk were obtained from the solution of the characteristic equations by 
using the McMahon formulas, given in [5]. Table 1 lists the roots of the present character- 
istic equations. 

Figure 2a, b, c shows the distribution of the temperature 0 in a radial cross section 
at an angle ~ for various Fo. It can be seen from the graphs that that for all practical 
purposes the steady state is reached for Fo~0.5. 
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FLOW OVER BLUNT BODIES WITH SPIKES AND CAVITIES 

Yu. M. Davydov, G. P. Korobitsyn, 
and V. G. Postnikov 

UDC 517.9:533.7 

The influence of the shape of bodies of revolution with complicated generating 
lines on the coefficient of drag is investigated by the method of "large parti- 
cles." 

It is known that even a slight change in the shape of the generating lines of bodies of 
revolution has a strong influence on the aerodynamic coefficient of drag [I, 2]. The intro- 
duction of new elements of the generating lines, such as the presence of special features of 
the cavern or spike type on the front surface, can have all the more pronounced an influence 

on c x. 

"Bow" separation zones are characteristic of the flows around such bodies. Ever more 
attention is presently being paid to the investigation of separation flows [3, 4, and others]. 
The conducting of experiments at high velocities is connected with considerable, at times 
fundamenta~ technical difficulties, and such natural experiments are very costly, too. There- 
fore, it is desirable to use a numerical experiment for the solution of such problems [5]. 
The method of "large particles" [6] is used in the present report. Its use is desirable be- 
cause it allows one to study nonsteady flows during streamline flow over blunt bodies having 
generating lines of complicated shape (including bends) without the isolation of any singulari- 
ties. The spectrum of velocities of the oncoming stream is sufficiently wide, including sub-, 
trans-, and supersonic modes. The bodies of revolution with generating lines of arbitrary 
configuration, including sections with bends and concavities, were calculated by the method of 
"fractional cells" [7]. 

An analysis of the experimental and numerical results obtained allows us tomake the fol- 
lowing basic classification of modes with streamline flow over bodies with spikes (Fig. i). 
We note that nonsteady modes were not considered. 

The pattern of streamline flow over a cylindrical body of revolution with a "short" 
spike, when the distance of withdrawal of the shock wave from the body over which the flow 
occurs is greater than the length of the spike, is shown in Fig. la. 
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